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Abstract
A simple standard equation for the evolution of the electrons and
electromagnetic fields in a gyrotron cavity is studied. A number of
mathematical properties are shown: existence and uniqueness of solutions for a
limited axial extent and existence and uniqueness for all axial lengths in one case
of particular interest. A Poynting theorem is obtained directly from the model
and the Hamiltonian character of the electron motion is demonstrated. The
start-up and final state in the gyrotron cavity are also examined. The efficiency
of energy flux transfer from the electron beam to the wave is estimated.

PACS numbers: 52.35.Hr, 84.40.Ik

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Gyrotrons are electron tubes that currently provide both steady state and pulsed power in the
frequency range of about 20–170 GHz and powers up to about 1 MW. Gyrotrons are also
believed to be able to be developed in the future to produce very powerful electromagnetic
radiation in a wider frequency range (optical, microwave, soft x-rays). In a gyrotron cavity
the electron beam is guided by a longitudinal, constant magnetic field. The electrons undergo
cyclotron oscillations and radiate at approximately that frequency. Although many more
complex models are presently in use to represent gyrotron dynamics, there exist standard,
relatively simple models that remain in active use. It is the purpose of this paper to explore
some relevant mathematical and physical properties of one of these models (2, equations (2.60),
(2.61)), (4, chapter 4). There is a vast literature on the derivation of these models. We cite only
the relatively recent first monographs [4, 5]. They review the field and give more extensive
references.

The model in question involves a paraxial approximation to the electron motion and to
the fields. The transverse electron momentum density is p(ζ, θ) = u(ζ, θ) + iv(ζ, θ), where
ζ is the axial coordinate and θ is a parameter which characterizes the spiralling position of the
particle projected onto a plane ζ = constant. The parameter θ is scaled so that 0 � θ � 2π and
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p(ζ, θ) is periodic in θ . The electromagnetic field is dominated by its x and y components, and
the complex field is represented as f (ζ ) = fr(ζ ) + ifi(ζ ). It is also convenient to introduce
df

dζ
= ig(ζ ). In appropriate dimensionless variables, p(ζ, θ) satisfies the relativistic version

of Newton’s laws:
dp(ζ, θ)

dζ
+ i

1

s
(c + |p|2)p = if p̄s−1, (1)

where p̄ is the complex conjugate of p, s is the harmonic number of the oscillations and c is a
real constant. We consider in detail the case s = 1 here, for which the fields are non-zero on
axis, although we give many general results for all s. The electromagnetic field written as the
second-order equation is

d2f

dζ 2
+ γ (ζ )f = d

2π

∫ 2π

0
dθ [p(ζ, θ)]s , (2)

where d is a real constant and γ (ζ ) models the variation of radius of the cavity as a function
of ζ . Typically γ (ζ ) < 0 for ζ < 0 and γ (ζ ) > 0 for ζ sufficiently large. When γ (ζ ) < 0,
the electrons stimulate the production of microwaves. The integral on θ in (2) approximates
the electron current driving the microwaves averaged over one gyro-oscillation. Provided the
cavity parameters do not vary too rapidly, the average is a reasonable approximation. For
convenience we rewrite (2) as a first-order system

df

dζ
= ig(ζ ) (3)

dg

dζ
= i

{
γ (ζ )f (ζ ) − d

2π

∫ 2π

0
dθ [p(ζ, θ)]s

}
. (4)

To complete the differential equations we must impose some initial conditions or two-point
boundary conditions. We discuss this point further later in this paper, but we consider that in
any case we expect to introduce an electron beam at ζ = 0, so that the current distribution
averaged over one gyration is

p(0, θ) = ps(θ), (5)

with ps(θ) being a smooth, 2π -periodic function of θ , one typically assumes ps(θ) = eiθ . For
much of the analysis we work with the straightforward initial value problem

f (0) = fs, (6)

g(0) = gs. (7)

We note in passing that this system is reversible in space in the sense that under the
transformation p → p̄, ζ → −ζ, f → f̄ , g → ḡ, γ (ζ ) → γ (−ζ ) the system is unchanged.
Thus, whatever we show for ζ > 0 holds equally for ζ < 0.

In the next section, we present a number of general mathematical and physical properties
of the system (1), (3), (4). The appearance of the parameter θ in (1) and (4) implies that the
standard existence and uniqueness of solutions for the system is not immediately relevant.
These proofs typically involve some iteration and limiting process. One must take care that
in the limiting process one shows that the limiting function p(ζ, θ) is at least smooth enough
in θ that the integral in (2) or (4) exists and is the limit of the integral with the approximating
functions. The proof is straightforward, but must be done. The existence and uniqueness
is only for a limited interval in ζ , but applies for all values of s. When s = 1, special
properties of the system allow one to show that solutions exist for all ζ and that they are as
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smooth in θ as the initial data. Thus, while p(ζ, θ) may vary rapidly in θ , if it starts out as
continuous or differentiable in θ then it remains of the same class. The existence for all ζ is of
physical significance in that the phenomenon of beam bunching, which does certainly occur,
cannot produce singularities or breakdown of solutions. Any numerical solutions which show
breakdown are not computed with sufficient accuracy to represent the actual solution. The
result may be true for other values of s, but our proof is not relevant in these cases. We then
obtain directly from the system (1), (2) or (1), (3), (4) the Poynting theorem on the conservation
of energy flux. Finally, we show that (1), where f (ζ ) is considered an arbitrary function of ζ ,
is a Hamiltonian system for the particle motion. The result is not surprising, but again must
be shown. Finally, we introduce the very convenient set of angle-action variables.

The third section considers only the case s = 1 and considers the idealization where
γ (ζ ) = −�1 for z1 � ζ � 0, and γ (ζ ) = +�2 for ζ � z2, where �1 and �2 are
positive. A linearized perturbation of the system in z1 � ζ � 0, linearized about the
state p = eiθ−i(c+1)ζ , f = g = 0, enables one to determine how a gyrotron starts up. We show
there is essentially a unique start-up mode, so that with fs and gs chosen consistent with this
mode the initial value problem is reasonable. We then turn to the final state and ask under
what conditions is a solution to the system with f (ζ ) = F e−ikζ possible? We determine all
such solutions which are dynamically accessible from the initial state. We give examples of
such final states for the case of |F | small. With such a choice, perturbation analysis allows
a fairly complete characterization of the possible states. In some cases only one final state is
possible, while in other cases multiple final states are possible. We are also able to determine
the efficiency of the energy flux conversion from the beam to the wave. We note that in many
cases of physical relevance, see e.g. reference [2], F is indeed small.

The last section of this paper summarizes the results.

2. Some general properties of the model

2.1. Existence and uniqueness of solutions in ζ and θ

The existence and uniqueness proof for the system (1), (3), (4) requires a relatively
straightforward extension of the usual Picard–Lindelöf iteration argument. To show the
solution exists in some finite time interval, one first shows that one can carry out an iteration
with uniform bounds on the iterates. One can then easily show that the iterates form an
equicontinuous set of functions in the parameter θ . The usual arguments then show that
the iterates converge, and equicontinuity together with the standard arguments show that the
iterates converge to a solution. The uniqueness is exactly the same as in the standard case.
One can see this program carried out in the thesis [2] for the special case s = 1.

We now sketch in more detail the elements of the proof of the theorem that there is a
positive constant C such that in 0 � ζ < C the problem possesses exactly one solution within
the class of functions continuous in ζ and θ and with p(ζ, θ) periodic of period 2π in θ . We
state a series of elementary lemmas which lead to the proof of the theorem.

Let B be a function space the elements S of which represent a triple of functions
S := (p(ζ, θ), f (ζ ), g(ζ )) continuous in their arguments in 0 � ζ < C1, 0 � θ � 2π ,
and periodic of period 2π in θ . Let ‖S‖ ≡ supθ |p(ζ, θ)| + |f (ζ )| + |g(ζ )| and let � be the
set of all such functions with norm less or equal to 2

(
supθ |ps(θ)| + |fs | + |gs |

)
.

We rewrite the system of differential equations as an integral equation by means of the
operator O, where

OS =
(

ps(θ) + i
∫ ζ

0

{
f (ζ ′)[p̄(ζ ′, θ)]s−1 − 1

s
(c + |p|2)p(ζ ′)

}
dζ ′,
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fs + i
∫ ζ

0
g(ζ ′) dζ ′,

gs + i
∫ ζ

0

{
γ (ζ ′)f (ζ ′) − d

2π

∫ 2π

0
[p(ζ ′, θ)]s dθ

}
dζ ′

)
. (8)

Clearly, any fixed point of O within the function space B is a solution of the differential
equations.

Lemma 1. There is a C2 > 0 such that for 0 � ζ < C2 the set � is closed under the
operation O.

Proof. Obvious as the integrands are uniformly bounded in �. �

Lemma 2. There is a K1 > 0 such that for S1(ζ, θ) and S2(ζ, θ) in � and 0 � ζ < C2

‖OS1(ζ, θ) − OS2(ζ, θ)‖ � K1

∫ ζ

0
‖S1(ζ

′, θ) − S2(ζ
′, θ)‖ dζ ′. (9)

Proof. Obvious as the integrands can be written as sums of products of a uniformly bounded
function times ‖S1(ζ

′) − S2(ζ
′)‖. �

Corollary

sup
0�ζ ′�ζ

‖OS1(ζ
′, θ) − OS2(ζ

′, θ)‖ � Kζ sup
0�ζ ′�ζ

‖S1(ζ
′, θ) − S2(ζ

′, θ)‖.

Corollary. There is a C3 > 0 such that for 0 � ζ < C3 O is a contractive mapping on � in
the norm

|||S(ζ, θ)||| = sup
0�ζ ′�ζ

‖S(ζ ′, θ)‖.

Lemma 3. Let S1 be any element of �, and let p1(ζ, θ) be the corresponding component of
S1 and Op1(ζ, θ) the corresponding component of OS1, then there is a constant K2

|Op1(ζ, θ) − Op1(ζ, θ ′)| � |ps(θ) − ps(θ
′)| + K2

∫ ζ

0
|p1(ζ

′, θ) − p1(ζ
′, θ ′)| dζ ′. (10)

Proof. Obvious from the structure of the integrands and the uniform boundedness of the
various functions. �

Lemma 4. Let Sn be the sequence of functions OnS0, where S0 is an arbitrary element of �,
then there is a C4 > 0 such that for 0 � ζ < C4 the sequence {Sn} converges uniformly to a
unique element of �.

Proof. Pick C4 < inf(C3, 1/(K2 + 1)), then for 0 � ζ < C4

sup
ζ

|Op1(ζ, θ) − Op1(ζ, θ ′)| � |ps(θ) − ps(θ
′)| + η sup

ζ

|p1(ζ, θ) − p1(ζ, θ ′)|, (11)

where η < 1. Hence, {Sn} converges uniformly to a limiting function which is clearly
continuous in ζ . Let pn(ζ, θ) be the corresponding element of Sn. The estimate (11) shows
that

lim
n→∞ sup

ζ

|pn(ζ, θ) − pn(ζ, θ ′)| � |ps(θ) − ps(θ
′)|

1 − η
. (12)
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Thus, the limiting function is also continuous in θ and periodic of period 2π . The uniqueness
of the limiting function is also immediate from (9). �

Lemma 5. There is at most one fixed point in � for 0 � ζ < C4.

Proof. Obvious from contractive mapping.
Hence, the theorem is proved. �

2.2. Existence and uniqueness for all ζ for s = 1

Theorem. The problem possesses a (unique) solution for all ζ when s = 1.

Lemma 1. Let the problem have a solution S(ζ, θ) in the interval 0 � ζ < D, then there is a
constant L such that ‖S(ζ, θ)‖ � ‖S(0, θ)‖eLζ .

Proof. If we introduce the real function ψ(ζ, θ) where

ψ(ζ, θ) =
∫ ζ

0
[c + |p(ζ ′, θ)|2] dζ ′ (13)

then from (1)

p(ζ, θ) = eiψ(ζ,θ)

[
ps(θ

′) + i
∫ ζ

0
f (ζ ′) eiψ(ζ ′,θ) dζ ′

]
, (14)

sup
(θ)

|p(ζ, θ)| � sup
θ

|ps(θ)| +
∫ ζ

0
|f (ζ ′)| dζ ′. (15)

From (8) we also have

|f (ζ )| � |fs | +
∫ ζ

0
|g(ζ ′)| dζ ′ (16)

|g(ζ )| � |gs | + sup
ζ

|γ (ζ )|
∫ ζ

0
|f (ζ ′)| dζ ′ +

|d|
2π

∫ ζ

0
dζ ′ sup

θ

|p(ζ ′, θ)|. (17)

Hence,

‖S(ζ, θ)‖ � ‖S(0, θ)‖ + (1 + |�| + |d|)
∫ ζ

0
‖S(ζ ′, θ)‖ dζ ′ (18)

where

� = sup
ζ

|γ (ζ )|. (19)

The result now follows from the Grönwall inequality. �

Lemma 2. S(ζ, θ) is uniformly continuous in θ for all ζ in the interval 0 � ζ < D.

Proof. We return to (10). Since the preceding lemma implies that S is uniformly bounded in
0 � ζ < D, the constant K2 exists for the entire interval 0 � ζ < D. Let p(n)(ζ, θ) be the
nth approximation to p1(ζ, θ), where p(0)(0, θ) = ps(θ). Then it follows easily from (10) by
iteration that
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|p(n)(ζ, θ) − p(n)(ζ, θ ′)| � eK2ζ |ps(θ) − ps(θ
′)|. (20)

The uniformity of continuity follows. �

Lemma 3. The solution S(ζ, θ) can be extended to ζ = D and is continuous in θ for ζ = D.
The existence of uniformly bounded derivative dS

dζ
(ζ, θ) implies that S(ζ, θ) can be extended

continuously to ζ = D, and (20) shows that S(ζ, θ) is continuous in θ .

Corollary. The solution can be extended for some interval with ζ > D.

Proof. Apply the existence and uniqueness theorem of the previous section.
Hence, it is impossible that there exist a constant E such that a solution exists for

0 � ζ < E but for no larger interval.
Thus, the theorem is proved. �

2.3. Energy flux conservation

We see from (1) and its complex conjugate that

d

{
p̄

dp

dζ
+ p

dp̄

dζ

}
= id(f p̄s − f̄ ps), (21)

while from (4)

f̄
dg

dζ
+ f

dḡ

dζ
= i

d

2π

{
−f̄

∫ 2π

0
dθ [p(ζ, θ)]s + f

∫ π

0
dθ [p̄(ζ, θ)]s

}
, (22)

so that

d

dζ

{
d

2π

∫ 2π

0
p̄p dθ − f̄ g − f ḡ

}
= 0 (23)

or

d

2π

∫ 2π

0
|p|2 dθ + 2 Im f̄ ′f = constant. (24)

This result is the energy flux conservation, or Poynting, theorem.

2.4. Hamiltonian structure of the electron motion

If we write p(ζ, θ) = u(ζ, θ) + iv(ζ, θ), then the equation of motion for the electron becomes

du

dζ
= 1

s
(c + (u2 + v2))v − Im[f (ζ )(u − iv)s−1] (25)

dv

dζ
= −1

s
(c + u2 + v2)u + Re[f (ζ )(u − iv)s−1]. (26)

If we set

H(u, v; ζ ) := 1

s
c
u2 + v2

2
+

1

s

(u2 + v2)2

4
− Re f (ζ )

(u − iv)s

s
(27)

then
du

dζ
= ∂H

∂v
and

dv

dζ
= −∂H

∂u
. (28)

An immediate and important consequence of the Hamiltonian character of autonomous systems
is that the Hamiltonian function is constant on trajectories and that the system is area preserving.
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In (25)–(28), however, we assume that f is an arbitrary smooth function of ζ . Because of this
ζ -dependence, H is not autonomous and thus not constant on trajectories. But H generates
an area-preserving transformation of the phase plane [3]. Specifically, let D(u, v, ζ ) be a
connected domain in the (u, v) plane, which depends on ζ . Each point in D changes with
respect to ζ according to the equations of motion (25), (26) or, equivalently, (27), (28). Then,
the area of D does not change with ζ or∫

D(u,v,ζ )

du dv = constant. (29)

For the initial data (5) the area inside the curve p(0, θ) = eiθ is just π , so that any state
accessible from the initial state (5) must also have an area π . Similarly since this initial state
with fs ∼ gs ∼ 0 has energy flux d, any state accessible from this state must also have energy
flux d.

We conclude this section with a possible standard change of variables from (u, v) to
angle-action variables. If we set

u =
√

2I cos ψ (30)

v =
√

2I sin ψ, (31)

then
∂(I, ψ)

∂(u, v)
= 1, (32)

so that the transformation is ζ -independent and area preserving.
From these properties, or directly from the differential equations (25), (26), one concludes

that if one inserts (30), (31) into (27) then

H(I,ψ) = cI/s + I 2/s − Re((2I )s/2 e−isψf )/s (33)

and the equations of motion for I and ψ are Hamilton’s equations with Hamiltonian (33).
If f (ζ ) is in fact independent of ζ then the solutions of the equations of motion are H =
constant, where H is given by (27) or (33). We shall use these results in the next section.

3. Initial and final states in a gyrotron

For this section, we examine the nature of plausible initial and final states in a gyrotron. We
idealize the system and assume that for ζ � 0, γ (ζ ) = −�1, and for ζ � z2, γ (ζ ) = +�2,
where �1 and �2 are positive. We recognize that this is not physically practicable, but it
enables us to explore the nature of the solutions and describe a class of accessible final states.
Although we have written the following subsections for the case = 1 all the results can be
easily extended to arbitrary s.

3.1. Initial states

We start with the simpler case of the initial states or gyrotron start-up.
It is clear that an exact solution of our system (1), (2) with p(0, θ) = ps(θ) is

p(ζ, θ) = ps(θ) exp[−iζ(c + |ps(θ)|2)], (34)

f = 0. (35)

We put ps(θ) = exp iθ , linearize about this state and write
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p = exp i[θ − ζ(c + 1)]{1 + p1(ζ, θ) + · · ·} (36)

f = f1(ζ ) e−iζ(c+1) + · · · (37)

then

p1,ζ + i(p1 + p̄1) = if eiθ (38)

f1,ζ ζ − 2i(c + 1)f,ζ − [�1 + |c + 1|2]f1 = d

2π

∮
dθ p1(ζ, θ) e+iθ . (39)

Before we apply a Laplace transform it is useful to separate real and imaginary parts

p1 = u + iv, f = fr + ifi, (40)

so that

u,ζ = (fr sin θ − fi cos θ) (41)

v,ζ + 2u = (fr cos θ + fi sin θ). (42)

When we assume that the dependent variables vary as eσζ , Re σ > 0, we find

u = (fr sin θ − fi cos θ)/σ (43)

v = −2(fr sin θ − fi cos θ)/σ 2 + (fr cos θ + fi sin θ)/σ. (44)

It is now easy to evaluate

1

2π

∫
p1 eiθ dθ = 1

2π

∫
(u cos θ − v sin θ) dθ +

i

2π

∫
(u sin θ + v cos θ) dθ (45)

= f

(
1

σ 2
+

i

σ

)
, (46)

so that

σ 2[σ − i(c + 1)]2 − �1σ
2 = d(1 + iσ). (47)

If we set σ = iτ , then the equation for τ is

τ 2[�1 + (τ − c − 1)2] − d(1 − τ) = 0. (48)

Since the polynomial is negative for τ = 0 and positive for sufficiently large values of |τ |,
there are always at least two real roots, one positive and one negative. These roots correspond
to purely oscillating solutions of the system. When 0 < d � 1, there are also two other modes
of the system

σ = i(c + 1) ±
√

�1 + 0(d). (49)

Clearly, the mode with the plus sign is growing as ζ increases and tends to zero as ζ tends to
−∞. Thus, reasonable starting values for the differential equations would be to initialize this
mode with the plus sign in (49). The values would then be

f1 = fs (50)

g1 = −i
√

�1f1 (51)

and the modifications to p are given by (36), (43) and (44). The actual value of fs is arbitrary,
but it should be small. The modifications to p should also be included in the initialization. It
would not be reasonable to mix in any of the purely oscillating solutions, as they cannot grow
out of noise, as the chosen solution can. The specification of initial data for f1, g1 and p1

converts the two-point boundary value problem to an initial value problem. For the reasons
just given, the change in the problem seems appropriate.
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3.2. Final states

We now turn to the final state of the gyrotron for s = 1. The desirable final state should be a
pure outgoing wave, that is f = F e−ikζ , where k > 0, and without loss of generality F is a
real constant. We turn to the Poynting theorem (24), evaluate the constant in the initial state
with f = 0 and p = eiθ and conclude for ζ � z2 that

2kF 2 = d

{
1 − 1

2π

∫ 2π

0
|p(ζ, θ)|2 dθ

}
. (52)

The wave equation (2) implies

(�2 − k2)F = d eikζ

2π

∫ 2π

0
p(ζ, θ) dθ. (53)

Thus, (52) and (53) are two constraints that the final state must satisfy. We have one additional
constraint, the constancy of the area inside the curve in the phase plane p(ζ, θ), 0 � θ � 2π

or (29). We defer giving this constraint explicitly until we give the final state more precisely.
If we introduce p̃(ζ, θ) as

p(ζ, θ) = p̃(ζ, θ) e−ikζ (54)

then p̃(ζ, θ) satisfies the equation

dp̃

dζ
+ i(c − k + |p̃|2)p̃ = iF (55)

and (52), (53) becomes

2kF 2 = d

{
1 − 1

2π

∫ 2π

0
|p̃(ζ, θ)|2 dθ

}
(56)

(�2 − k2)F = d

2π

∫ 2π

0
p̃(ζ, θ) dθ. (57)

We see that (55) has exactly the same structure as the original equation (1), except that the
inhomogeneous term is independent of ζ . Thus, (55) is a Hamiltonian system with Hamiltonian
given by (27) or (33), where c is replaced by c − k and f (ζ ) is replaced by the real constant F.
In particular, the solution of (55) for θ fixed is exactly the curve H = constant passing through
the initial point. In principle, one could take any closed curve p = pf (θ), 0 � θ � 2π

which encloses an area of π and construct the solution p(ζ, θ), where p(ζ0, θ) = pf (θ), and
allow each point on the curve to move according to Hamilton’s equations or H = constant.
It would seem unlikely that such a solution could also have the right-hand side of (56), (57)
independent of ζ , as required.

We show that there is a simple method to construct solutions p̃(ζ, θ) of (58) which enclose
an area π and which also can satisfy (56) and (57). We cannot guarantee that we have all such
possible solutions, but it appears likely. To describe the construction of the solutions we turn
to the dynamical system (55), with Hamiltonian (27) or (33) and replacement c → c − k and
f (ζ ) → F . If we introduce ũ and ṽ as the real and imaginary parts of p̃, and the angle-action
variables Ĩ = 1

2 (ũ2 + ṽ2), ψ̃ = tan−1 ṽ/ũ, then the Hamiltonian is

H = (c − k)

(
ũ2 + ṽ2

2

)
+

(ũ2 + ṽ2)2

4
− F ũ, (58)

= (c − k)Ĩ + Ĩ 2 − F
√

2Ĩ cos ψ̃. (59)
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3.2.1. Critical points of the Hamiltonian. The critical points of the Hamiltonian at which
∂H
∂ũ

= ∂H
∂ṽ

= 0 satisfy

(c − k + ũ2 + ṽ2)ṽ = 0, (c − k + ũ2 + ṽ2)ũ − F = 0. (60)

Remark. Note that (58) is symmetric w.r.t. ṽ = 0 and that it does not change if we replace both
F by −F and ũ by −ũ. Thus, the critical points of the Hamiltonian are placed symmetrically
about the ũ-axis. The replacement of F by −F leads to the reflection of the curves H =
constant in the ṽ-axis.

For F = 0 and c − k > 0, there is only one critical point, the origin. It is an O point.
We now assume F = 0 and c − k < 0, i.e. k − c > 0. In this case, there is the critical point
(ũ, ṽ) = (0, 0) and a circle of critical points with radius

√
k − c and centre (0, 0). The related

dynamics is most easily analysed via the adapted (c → c − k, ps(θ) → p̃s(θ)) exact solution
(34) (see also [1], where equation (1) was analysed for prescribed rhs, i.e. for the cold-cavity
gyrotron model).

If 0 < |p̃s(θ)| <
√

k − c, then the trajectories are circles around the origin with radius
|p̃s |. The phase point rotates counterclockwise with period 2π(k − c − |p̃s |2)−1.

If |p̃s | >
√

k − c, then the trajectories are also circles around the origin with radius |p̃s |,
but the phase point rotates clockwise, with period 2π(|p̃s |2 − (k − c))−1.

Note that the period of the phase point tends to infinity if |p̃s | approaches
√

k − c from
below or from above.

We now turn to the case F 	= 0. Without restriction we assume F > 0. In this case,
equation (60) reduces to

ṽ = 0, (c − k)ũ + ũ3 − F = 0.

If c − k > 0, then there is exactly one critical point, a centre, and all orbits are simple
closed curves, see figure 1. Here and in the cases following each trajectory p̃(ζ ) = ũ + iṽ is
closed, and thus represents a solution of Hamilton’s equations with some period, which we
denote as τ , so that

p̃(ζ + τ) = p̃(ζ ). (61)

Computations were done in MATLAB with ode45 for 0 � ζ � ζf . We used the same
ζf for all orbits in the same subfigure, but different ζf for the different subfigures because
the values of τ are very different for different parameter values and different trajectories.
Figures 1(a) and later 3(a) also show graphically how much of an orbit is traversed in a
distance 0 � ζ � ζf .

If c − k < 0, there are either one or three critical points. The transition occurs at F = Fd ,

Fd = 2

(
k − c

3

)3/2

,

where two of the three critical ũ-values coincide and turn complex conjugate. For all values
of F, the real parts of all three critical ũ-values add up to zero.

If c − k < 0 and 0 < F < Fd , then there are exactly one X-point and two O-points.
Again all orbits are closed, see figure 2. If c − k < 0 and F = Fd , the X-point and one of the
O-points coincide. If c − k < 0 and F > Fd , there is only one centre and all orbits are closed,
see figure 3.
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Figure 1. Computed orbits (ũ(ζ ), ṽ(ζ )), 0 � ζ � ζf , for the Hamiltonian (58) with parameter
values k − c = −0.5 < 0 and F = 0.25. All initial values are of type (ũ0, 0) with ũ0 � 0.375,
the approximate value at the centre. (a) ζf = 4 < τ for most orbits shown; (b) ζf = 8 > τ for all
orbits shown.
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Figure 2. Computed orbits (ũ(ζ ), ṽ(ζ )), 0 � ζ � ζf , for the Hamiltonian (58) with
k − c = 0.5 > 0. Values of ζf such that ζf > τ for all orbits shown. Those trajectories close to
the X-points have the largest τ . (a) F = 0.1 < Fd, ζf = 40; (b) F = 0.136 ≈ Fd, ζf = 60.

3.2.2. Solutions satisfying the constraints. We can now construct a solution of the system
p̃(ζ, θ) which can reasonably be expected to satisfy the area condition and also the conditions
(56) and (57). We assume that for all values of ζ and θ the solution p̃(ζ, θ) lies on one closed
periodic trajectory, and we identify this trajectory as q̃(ζ ) with period τ . We must now assign
θ values on each point of the trajectory. We set

p̃(ζ, θ) = q̃(ζ + τθ/2π). (62)
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Figure 3. Computed orbits (ũ(ζ ), ṽ(ζ )), 0 � ζ � ζf , for the Hamiltonian (58) with
k−c = 0.5 > 0. Values of ζf such that ζf > τ for most orbits shown: in part (b), ζf = 8 < τ < 9
for the non-closed orbits shown. (a) F = 0.167 > Fd, ζf = 30; (b) F = 0.4, ζf = 8.

Clearly, this function satisfies Hamilton’s equations, is periodic of period τ in ζ and periodic
of period 2π in θ . We comment on other possibilities after we show that this choice allows
(56) and (57) to be satisfied. We observe that for any smooth function G(ζ + τθ/2π), which
is periodic of period τ in ζ ,

1

2π

∫ 2π

0
G(ζ + τθ/2π) dθ = 1

τ

∫ τ

0
G(ζ) dζ =

∫ τ

0 G(ζ) dζ∫ τ

0 dζ
. (63)

If we represent the trajectory in angle-action variables, then
dψ

dζ
= −∂H

∂I
= −(c − k) − 2I + F(2I )−1/2 cos ψ (64)

and Ĩ = Ĩ (ψ̃) so that (56) and (57) become

2kF 2

d
+

2
∫ 2π

0 I (ψ) dψ
( dψ

dζ

)−1

∫ 2π

0 dψ
( dψ

dζ

)−1 = 1 (65)

(�2 − k2)F = d

∫ 2π

0 q̃(ψ̃) dψ̃
( dψ̃

dζ

)−1

∫ 2π

0 dψ̃
( dψ̃

dζ

)−1 . (66)

Finally, the area condition expressed in terms of angle-action variable is

1

π

∫ 2π

0
Ĩ (ψ̃) dψ̃ = 1. (67)

The three conditions (65)–(67) are manifestly independent of ζ .
The integrals in (63), (65) and (66) assume that the orbit is periodic of period 2π in ψ . In

some cases the orbit does not cover this range in ψ and is double-valued in ψ . In these cases
the integrals are to be understood as an integral over the closed orbit, see Case III, examined
in subsection (3.2.4).
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3.2.3. Other choices Before we explore the consequences of (64)–(66) further we comment
on other choices instead of (62). It seems reasonable that p̃(ζ, θ) should lie on one trajectory
of H = constant. The question is how to assign θ values to points on the trajectory. We require
that the orbit must be periodic in ζ of period τ and periodic in θ of period 2π . Suppose we
define

θ = φ + 
(φ), (68)

where 
(φ) is periodic of period 2π in φ and 
′(φ) > −1, so that φ + 
(φ) is monotone. In
that case another possible function p̃(ζ, θ) would be

p̃(ζ, θ) = q̃(ζ + τφ(θ)/2π). (69)

However, the expression analogous to (63) would be

1

2π

∫ 2π

0
G(ζ + τφ(θ)/2π) dθ = 1

2π

∫ 2π

0
G(ζ + τφ/2π)(1 + 
′(φ)) dφ (70)

and there is little reason to suspect that one could select 
(φ) so that the expressions would
be independent of ζ . Thus, while we cannot be assured that (62) is the only possibility, it is a
reasonable expectation.

We note that in terms of the original dependent variable

p(ζ, θ) = q̃(ζ + τθ/2π) e−ikζ . (71)

Thus, except for the special cases in which τ and 2π/k are commensurable, the particle motion
defined by (71) is not periodic, it is only almost periodic. If one wishes to explore any possible
periodicity one must consider the combination p(ζ, θ) eikζ . We note also that although we
have written (62)–(67) for the case s = 1 all the expressions apply equally well for arbitrary s
if one only replaces (64) by the corresponding expression obtained from (33).

3.2.4. Consequences. In order to explore the consequences of our analysis, we present a few
perturbation expansion solutions of our system. Although we do not consider the matter in
detail, the expansions are convergent in the parameters we choose. We expand the orbits under
the assumption that |F | is small. We use the angle-action variables to represent the orbits and
omit ∼ from the variables, which are now q, I and ψ .

In order to compare the properties of the different classes of solutions, it is necessary to
introduce a figure of merit for the different states. The Poynting theorem (65) shows that the
unit incident electron beam energy flux is divided between the outgoing wave and the outgoing
electron beam. Clearly, we would like the outgoing wave energy flux as large as possible.
Hence, we choose 2kF 2/d as the figure of merit; this quantity clearly ranges between 0 and 1.

Characterization of the orbits and explicit form of the constraint (67). When we solve (59) for
I (ψ), assuming |F | small, there are two distinct classes of trajectories. One of these classes
then divides into two distinct cases, so that there are finally three separate cases.

Case I. If

c − k + 2I0 	= 0 (72)

then

I = I0 + F
√

2I0 cos ψ/(c − k + 2I0) + O(F 2). (73)

The condition that I (ψ) enclose a domain of unit area, (67), is simply

I0 = 1/2 + O(F 2). (74)
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The second class of trajectories is more complex and assumes

c − k + 2I0 = 0 (75)

in which case

I = I0 + I1 + · · · (76)

where

I 2
1 (ψ) − F

√
2I0 cos ψ = constant. (77)

Thus, we may introduce a constant λ > −1 such that

I1(ψ) = ±
√

F(2I0)
1/4

√
λ + cos ψ. (78)

This group of orbits also divides into two classes.

Case II. If

λ > 1 (79)

then all values of ψ are admissible in (78) and the area condition becomes

2I0 ± 1

π

√
F(2I0)

1/4
∫ 2π

0

√
λ + cos ψ dψ = 1 + O(F). (80)

Case III. If −1 < λ < 1, so that

λ = − cos ψM, 0 < ψM < π (81)

then

−ψM < ψ < ψM (82)

and the function I (ψ) is double valued in ψ , where one takes the plus sign in (78) on one
branch and then the minus sign on the other branch. In this case, the domain is roughly lune
shaped and the area condition has an entirely different structure, so that

1 = 2

π

√
F(2I0)

1/4
∫ ψM

−ψM

√
λ + cos ψ dψ. (83)

This condition can only be satisfied for large values of I0, specifically I0 = O(F−2). It will
become clear shortly that no acceptable solutions for this case exist. We have now completed
the characterization of the orbits and determined the explicit form of the constraint (67).

The constraints (65) and (66). We must now examine the other two constraints (65) and (66).
These constraints involve the additional parameters �2 and d. In addition k, which does appear
in (73) and implicitly in (83) through (75), occurs in (65), (66) in a more sensitive manner.

Case I. In this case, (72)–(74) apply and in leading order in F

2I = 2I0 + O(F) cos ψ + O(F 2) (84)

or

2I = 1 + O(F) cos ψ + O(F 2) (85)

and thus (65) becomes

2kF 2/d = O(F 2). (86)

This class of solutions has very low efficiency of transfer of energy flux from electrons to the
wave.
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We next turn to the two cases when c − k + 2I0 = 0, given by (75)–(83). We find here

dψ

dζ
= ∓2

√
F(2I0)

1/4
√

λ + cos ψ + · · · . (87)

Case II. We start with the case λ > 1, for which I1(ψ) is given by (78) and the area relation
is (80). Now (65) becomes(

1

2π

∫ 2π

0

dψ√
λ + cos ψ

)
kF 2 = ±

√
Fd

(
1

2π

∫ 2π

0
dψ

√
λ + cos ψ

1

2π

∫ 2π

0

dψ√
λ + cos ψ

− 1

)
.

(88)

The Schwarz inequality shows that the right-hand side is positive only for plus (+) sign.
Further, d/k must be small of order F 3/2. With this scaling F is determined. Finally, with
d/k = O(F 3/2) (66) reduces to

k =
√

�2 + O(F). (89)

Thus, acceptable final states exist if F = O(d/k)2/3, and F(k/d)2/3 and λ are chosen to
satisfy (88). It is easy to verify that as λ → 1

kF 3/2/d = 2
√

2

π
, (90)

while for λ → ∞
kF 3/2/d → 0. (91)

Clearly, solutions in λ exist for all intermediate values of kF 3/2/d. In this analysis only the
upper sign is allowed in (78) and (80). We may easily estimate the energy flux conversion
efficiency if we note

kF 2/d = O(F 1/2). (92)

More precisely, as λ → 1 we have

2kF 2/d = 4
√

2

π

√
F + O(F), (93)

and at F = 0.1 the efficiency would be 0.57. While such values of F may exceed the range of
validity of the expansion, the result suggests that reasonable efficiencies are likely.

Case III. In this case, c − k + 2I0 = 0,−1 < λ < 1, and the area condition is (83). Since
I0 = O(F−2), it is easy to see that in the remaining constraint (65) the ratio of the two integrals
is O(F−2) and no relevant solutions of (65) are possible. Thus, we are finally led to reject this
case as unphysical.

In summary, of the three cases one has very small energy flux conversion and one is
unphysical, but in the second case reasonable energy flux conversions seem possible.

4. Conclusions

We have examined a simple model of the electron interaction with the high frequency field
within a gyrotron cavity with the goal of exploring properties of solutions. We have shown
first that for a limited range in axial extent solutions always exist. For one particular class
of interactions, we also showed that solutions exist for any axial extent. In this case, the
smoothness of solutions is the same as the assumed smoothness of the initial beam profile.
We obtained directly from the equation the Poynting theorem for the constancy of energy flux.
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The electron motion was shown to be a Hamiltonian dynamical system, from which follows
constancy of the area in phase space confined by the beam.

We then turned to the initial and final states of a gyrotron. It is easy to obtain the standard
starting conditions for the electromagnetic wave together with corrections to the beam structure
of comparable magnitude. We consider possible final states in a cavity of uniform radius and
a purely outgoing wave. We present an electron distribution function structure consistent with
the equations of motion and dynamically accessible from the initial state. We study the final
state by perturbation expansion in the wave amplitude. It appears that multiple solutions are
possible. We have also identified a class of states with reasonable energy flux conversion from
the beam to the wave.
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